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Context

Regionalized Variable

Set of random variables with spatial dependence and spatial
correlation.

Figure 1: Example of 3D Regionalized variable

Figure 2: Example of 2D
Regionalized variable
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Context

Sampling

Only a small amount of measurements (Well) are available. Each
Well is Extremely Expensive.

Figure 3: Sampling Scheme Figure 4: Actual Well
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Context

Inverse Problem

With available measurements an inference system is required.

Sampling

System

Inference

System

Figure 5: General Inverse Problem Scheme in Regionalized variables
characterization
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Conventional methods

Acquisition Inference Scheme

High → Estimation (variograms, covariograms)
Low → Simulations (MPS)

(a) Variographic analysis

Canal Real Mediciones

Imagen de 
Entrenamiento

Simulaciones

Modelo 
Seleccionado

(b) MPS scheme

Figure 6: Classical Approaches
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New approaches in Geostatistics

Figure 6:on Optimal Sensor Placement and Geostatistics March 05, 2020 6/ 74
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Bias and Preferential Sampling

Non Preferential Sampling

Uniform random sampling

Deterministic stratified sampling

Randomized stratified sampling

Multiscale stratified sampling
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Bias and Preferential Sampling

Non Preferential Sampling

Uniform random sampling

Deterministic stratified sampling

Randomized stratified sampling

Multiscale stratified sampling

Preferential sampling, Why not?

Maximum indicator sampling
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Main Questions

Relevant Questions

Given K available measurements, what is the best location for
each one?
Given an statistical image model and a predefined number of
measures, is there an optimal sampling scheme?
What is the best inference methodology for the proposed
optimal sensing strategy?
Under the use of MPS approaches, can entropy and mutual
information be good criteria for optimal sampling?
What is the relation between the complexity of the model and
the sampling process under the context of MPS approaches?
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Motivation: 2D Regionalized Variable

Information Theory

Wellman [16] proposed the use of
Information Theory to geostatistical
analysis. They used Conditional
Entropy.

Information in Regionalized Variables

Each position represents a
random variable (with spatial
dependence).
Transitions are zones of high
uncertainty. Then, measuring
these zones will reduce global
uncertainty.
Wellman uses joint probabilities.

Entropy 2013, 15 1466

the information of cell C? Information entropy as a measure of uncertainty quantification, represented
in Figure 1b, has been presented in [2]. The extension to additional measures of information theory to
address the problem sketched in Figure 1c is evaluated here.

Figure 1. Principle of the evaluation of spatial uncertainty reduction through additional
information, investigated in this work. (a) Map of three regions with uncertain boundaries
(dashed lines) and cells in a regular grid used for subsequent uncertainty analysis.
(b) Uncertainty estimation based on probabilities of discrete outcomes in each cell.
(c) Estimated reduction of uncertainties; given the information in one cell (black outline),
the remaining uncertainty within this cell is 0 and uncertainties in the surrounding cells are
reduced. Adapted from Figure 2 in [2].

(a) Map with uncertainties

Unclear boundaries Grid structure
(subunits)

No uncertainty Highest uncertainty

A
B

C

(b) Uncertainty

high

low

D
C

E

high

low

(c) Reduced Uncertainty

Estimated reduction of uncertainty if
outcome at one location were known

In the following, the concept of using information entropy as a measure of spatial uncertainty is briefly
reviewed, followed by a description of the important concepts of joint entropy, conditional entropy, and
mutual information. As a test of feasibility, the measures are applied to a simple, but typical, simulation
example of spatial uncertainty about the unknown depth and thickness of a geological layer of interest
(for example a layer with a high mineral content, a coal layer, etc.). However, the application of the
measures can be transferred to other cases where uncertainties are evaluated in a spatial context. In
the case shown here, the analysis is focused on the determination of uncertainty correlations in the
subsurface. In this setting, one important objective of the analysis is to answer a question that is of
great relevance in many typical exploration settings: if additional information would be obtained, for
example through drilling, then where, and by how much, would this additional information reduce
spatial uncertainties?
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Hypotheses

Main hypotheses:

In Geostatistics, at low sampling regimes, the incorporation of prior
information (based on MPS and training images) in the design of
sampling strategy improves the performance with respect to classical
sampling approaches.

Adaptive sensing schemes can be integrated in the inference to improve
the state-of-the-art of geological field characterization.

Information measures are accurate predictors of the complexity of
simulation tasks, and can be used to improve inference for the type of
decisions carried out in planning and production stages.
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Objectives

Main Objective

Enhance the reconstruction of images describing 2-D categorical
regionalized variables by the use of new sensing strategies that
takes into account uncertainty reduction under an adaptive
strategy by taking advantage of its spatial structure and other
sources of expert knowledge of the media of interest.
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Objectives

Specific objectives:

Formalize a general theoretical framework for optimal sampling design
with focus on, but not limited to, categorical variables.

Develop an adaptive sensing design framework using joint entropy and
mutual information to measure uncertainty and spatial structure.

Compare the performance of the full combinatorial sampling strategy with
the sequential and the adaptive sequential strategies within sampling
design framework for the optimal information decision task.

Study some stopping criterion for each sampling strategy as a function of
the capacity of the field as a measure of its complexity.

Evaluate proposed sampling strategy on Markov random field models on
finite alphabet for regionalized random variables as a controlled scenario
to validate the proposed method.

Evaluate the proposed sampling strategy in a practical realistic context of
grade control for short-term planning.
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Formalization

Binary Regionalized Variable

We formalize this problem considering 2-D variables with
spatial correlation
Regionalized variables arises naturally as a suitable model to
represent 2-D random fields (finite alphabet images)
describing the subsurface channels.
A regionalized variable Z is a square 2-D random array of
variables representing a discrete image of finite size
M ×M = N , consisting of M2 discrete random variables:

Zu,v : (Ω,P)→ A = {0, . . . , |A| − 1} ∀(u, v) ∈ {1, . . . ,M}2,
(1)

with values in the finite alphabet A.
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Formalization

Binary Regionalized Variable

Without loss of generality, the random field Z can be
rearranged as a finite dimensional vector X in RN

The object to be characterized is a random image (or random
field) denoting the subsurface distribution by a collection of
finite alphabet random variables X = {Xi : i ∈ [N ]}
with, [N ] = {1, . . . , N}.

For every position i in the array, Xi is a random variable with
values in the finite alphabet A
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Formalization

Binary Regionalized Variable

Then we can define the collection XI as the subset of Xi variables
with i ∈ I, where I represent any subset of [N2],
XI = {Xi : i ∈ I}
In addition, the object XI is defined as the complement of XI over
the collection X

XI = {Xi : i ∈ [N2] \ I}

X11 X12 ... X1n

X21 X22
...

...
. . .

Xn1 ... Xnn
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Problem Formalization

Entropy and Uncertainty of X

The probability density function (pdf) of Xi is denoted by
PXi in A.

The collection X is equipped with its joint probability
distribution that we denote by PX in AN .

As a short hand, X y PX denote the vectorized random field
and its joint probability, respectively.
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Problem Formalization

Optimal Sensor Placement OSP

Thus, the problem of OSP can be posted as the problem of
selecting a subset of K elements of [N ].

Let FK ≡ {f : f ⊂ [N ], |f | = K} be the collection of
functions that select K-elements from N candidates.

Every f ∈ FK is a measurement allocation rule that models
the process of measuring the positions f(1), f(2), . . . , f(K) in
the random field.
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Problem Formalization

OSP by uncertainty reduction

Adopting the concept of entropy as a measure of uncertainty
of a random variable [4], we propose an algorithm that finds
the placement rule f through optimal reduction of a posteriori
entropy.
The criteria used in Eq. (2) states that the measurement of
the most uncertainty set of K positions will provide an
optimal global reduction of the uncertainty for the media of
interest (from the point of view of information theory).

X∗f = arg max
Xf⊂X

H(Xf ) (2)

H(Xf |Xf ) = H(X)−H(Xf ) (3)
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Summary

Concepts

Scenario: X = {Xi|(i) ∈ {1, . . . , N2}}

Objective: H(XNo Measured|XAny set of Measures) ≥
H(XNo Measured|XOSP set of Measures)

OSP algorithm
- arg max

XMeasured
H(X)−H(XNo Measured|XMeasured)

- arg min
XMeasured

H(XNo Measured|XMeasured)

- arg max
XMeasured

H(XMeasured)
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AMIS Proposal

Sampling Strategies for Uncertainty Reduction in Categorical
Random Fields: Formulation, Mathematical Analysis and

Application to Multiple-Point Simulations
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AMIS Formalization

It is possible to show with some formality that the entropy H(X) has an operational
meaning for the task of simulating X using n i.i.d. realizations

Entropy as an Indicator of Simulation Complexity

Considering ε sufficiently small, for all (x1, .., xn) ∈ Bn(ε), then:

µnX(x1, .., xn) ≈ 2−n·H(µX ) ≈
1

|Bn(ε)|
.

Then within this set Bn(ε), which is typical, all its elements have the same probability.
This means that when making i.i.d. samples of the model µnX and n is sufficiently
large, a single sample of this typical set (that happens with very high probability), has
the same probability than any other element of the set.
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AMIS Formalization

Problem Setting

The optimal sampling problem can be posted as a minimum cost decision problem,
where the cost is the complexity to characterize a random object in terms of i.i.d.
samples.
More formally, for a given number k ≤M2 of positions to be sensed in the
pixel-domain [M ]× [M ], let Fk ≡ {f : {1, .., k} → [M ]× [M ]} be the collection of
functions that select k-elements from [M ]× [M ]. Every f ∈ Fk represents a sampling
rule of size k that defines the positions to be sensed in the field, denoted by
If ≡ {f(1), f(2), ..., f(k)} ⊂ [M ]× [M ].
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AMIS Formalization

Problem Setting

In particular for f ∈ Fk, let

Xf ≡ (Xf(1), Xf(2), .., Xf(k)), (4)

denote the sensed random vector with values in Ak and let

X̂f ≡ (Xi,j : (i, j) ∈ [M ]× [M ] \ {f(1), f(2), .., f(k)}) (5)

denote the non-sensed random vector with values in AM2−k. In this context, given
some specific sensed values x̄ = (x1, .., xk) ∈ Ak, the complexity of simulating the

non-sensed position X̂f is given by

H(X̂f |Xf = x̄) = H(µX̂f |Xf
(·|x̄))

= −
∑

ȳ=(y1,..,yM2−k
)∈AM2−k

µX̂f |Xf
(ȳ|x̄) · log2 µX̂f |Xf

(ȳ|x̄). (6)
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Case Study

The proposed model is the one dimensional array described in Fig. 7.

A Binary Markov Chain

Figure 7: 1-D regionalized variable.

In the markovian scenario, the probabilistic model exhibits the following spatial
dependence: given the present, the future is independent of the past. For the proposed
setting, see Fig. 7, a past-present-future sorting has been imposed from location 1 to
the location N.
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Conditioning to any arbitrary subset of states

Arbitrary subset of states

Figure 8: Measured Variables in separated past and future subsets.

The target entropy of the conditional distribution for the state Xi, can be defined as:

H(Xi |
{
Xbj

}
=
{
xbj

}
,
{
Xaj

}
=
{
xaj
}

)

= −
∑
xi∈A

p(xi |
{
xbj

}
,
{
xaj
}

) · log p(xi |
{
xbj

}
,
{
xaj
}

)

by Eq. (??) = −
∑
xi∈A

p(xi | xbB , xa1 ) · log p(xi | xbB , xa1 )

= H(Xi | XbB = xbB , Xa1 = xa1 ) (7)
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Entropy for arbitrary subset of states

H(Xi | XbB , Xa1 ) =−
∑

xbB
∈A

∑
xi∈A

∑
xa1∈A

[(

p(XbB = xbB ) · p(Xi = xi | XbB = xbB ) · p(Xa1 = xa1 | Xi = xi)

) · log
(
p(xa1 | xi) · p(xi | xbB )

p(xa1 | xbB )

)]
(8)
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The Iterative Sequential Rule SMIS

Sequential (non-adaptive) maximum information scheme (SMIS) is proposed as an
iterative solution based on the principle of one-step-ahead sensing.

Induced Iterative Rule

Iterating this inductive rule, the k-measurement (after solving (i∗1, j
∗
1 ), (i∗2, j

∗
2 ) , .. ,

(i∗k−1, j
∗
k−1)) is the solution of SMIS at stage k, that is,

(i∗k, j
∗
k) = arg máx

(i,j)∈[M ]×[M ]\{(i∗l ,j∗l ):l=1,..,k−1}
H(Xi,j |Xi∗1 ,j∗1 , .., Xi∗k−1

,j∗
k−1

). (9)

Therefore, with this sequence of optimal positions
{

(i∗l , j
∗
l ) : l = 1, .., k}, for every

k ∈
{

1, ..,M2
}

, the sequential rule f̃∗k ∈ Fk can be constructed by

f̃∗k (1) = (i∗1, j
∗
1 ), f̃∗k (2) = (i∗2, j

∗
2 ), ..., and f̃∗k (k) = (i∗k, j

∗
k). (10)

on Optimal Sensor Placement and Geostatistics March 05, 2020 27/ 74



Introduction Proposal Formalization AMIS Approach RAMIS Approach RAMIS Applied Conclusions References

The Adaptive Sensing Problem AMIS

The adaptive maximum information sampling (AMIS) is introduced as an adaptive
sensing variation for the sequential strategy elaborated in Sect. ??.

Formally,

Instead of considering the information gain in average, with respect to the statistics of
the random vector (Xi∗1 ,j

∗
1
, Xi∗2 ,j

∗
2
, . . . , Xi∗

k−1
,j∗

k−1
) in (9), an adaptive strategy can

condition on the specific values previously measured at the k − 1 positions. Then,
assuming access to the “true data”(x1, .., xk−1) ∈ Ak−1 of the image at the positions
(ia1 , j

a
1 ), .., (iak−1, j

a
k−1), the next position is the solution of the AMIS approach, given

by

(iak(x1, .., xk−1), jak (x1, .., xk−1)) =

arg max
(i,j)∈[M ]×[M ]\{(ial ,jal ):l=1,..,k−1}

H(Xi,j |Xia1 ,ja1 = x1, .., Xia
k−1

,ja
k−1

= xk−1).

(11)
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AMIS approach

The Adaptive Sensing Problem

The next position to be sampled is the solution of the AMIS approach, given by

(iak(x1, .., xk−1), jak (x1, .., xk−1)) =

arg max
(i,j)∈[M ]×[M ]\{(ial ,jal ):l=1,..,k−1}

H(Xi,j |Xia1 ,ja1 = x1, .., Xia
k−1

,ja
k−1

= xk−1).

(12)

The solution in (12) is a function of the following set of marginal conditional
distributions in P(A){

µXi,j |Xia1 ,ja1
,..,Xia

k−1
,ja

k−1

(·|x1, .., xk−1) : (i, j) non-sensed at iteration k − 1

}
(13)

and, consequently, of the measured data (x1, .., xk−1).
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AMIS approach

Information Gain

The reduction of uncertainty or the information gained to resolve the field, attributed
to the adaptive decision rule that solves (12), given the previous positions (ia1 , j

a
1 ) , .. ,

(iak−1, j
a
k−1) and their data (x1, .., xk−1), at the stage k is denoted and expressed by

I(f̃ak , (x1, .., xk−1))︸ ︷︷ ︸
information gain

≡ H(X̂f̃a
k−1
|Xf̃a

k−1
= (x1, .., xk−1))︸ ︷︷ ︸

entropy of the prior model at stage k − 1

−

H(X̂f̃a
k−1
|Xia

k
,ja

k
, Xf̃a

k−1
= (x1, .., xk−1)),︸ ︷︷ ︸

minimum posterior entropy when selecting (iak, j
a
k ) at stage k − 1

= H(Xia
k
,ja

k
|Xia1 ,ja1 = x1, .., Xia

k−1
,ja

k−1
= xk−1) ≥ 0, (14)

where (iak, j
a
k ) is a short-hand for the solution of (12) that is a function of

(x1, .., xk−1). In fact, by using information quantities, I(f̃ak , (x1, .., xk−1)) is precisely

the mutual information between X̂f̃a
k−1

(the vector of non-sensed positions at the

stage k − 1) and Xia
k
,ja

k
(solution of (12)) conditioned by Xf̃a

k−1
= (x1, .., xk−1).
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AMIS approach

Diagram to solve the adaptive rule in Eq. (12)

Solver of Eq.

(34) Adap-

tive Rule at

stage k

Solverak

Location

Sample 1

Location

Sample 2

Location

Sample k − 1

...

...

Measure

Sample 1

Measure

Sample 2

Measure

Sample k − 1

...
...

(ia1 , j
a
1 )

(ia2 , j
a
2 )

(
iak−1, j

a
k−1

)

x1

x2

xk−1

Previous

Samples

µX̄

New

Sample

Location
(iak, j

a
k )

Figure 9: Diagram of the inputs and statistical information (model)
needed to solve the adaptive rule in Eq. (12)
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Empirical Analysis

As a performance indicator, C(fk) is introduced as the information of fk to resolve
the field normalized by the entropy of the entire field H(X̄).

In particular,

C(fk) ≡
I(fk)

H(X̄)
=

∑k−1
i=2 H(Xf(i)|Xf(i−1)) +H(Xf(1))∑N

i=2 H(Xi | Xi−1) +H(X1)
∈ [0, 1]. (15)

To provide insight note that: C(fk) = 0 means that the k-measurements produce no
reduction in uncertainty, and C(fk) = 1 means that there is no remaining uncertainty
to be resolved after taking the k-measurements, that is, H(X̃fk |X̄fk ) = 0.
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Conditional Entropies after sampling with SMIS

For this analysis, N = 1000 and a symmetric stochastic matrix A with transition
probability β = 0,01 and X1 uniformly distributed in {0, 1} are considered.

Conditional entropies for a binary Markov chain
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Figure 10: Conditional entropies given the sensed positions for a binary
Markov chain. Left: after the first 10 samples. Right: after 18 samples.
β = 0,01. Under the curves the actual realizations of the Markov chains
are presented
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Uncertainty Reduction for SMIS

.

Uncertainty Reduction
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Figure 11: Uncertainty reduction for 20 realizations of the Markov chain.
Continuous curves: SMIS; boxplots: random sampling. Left: β = 0,01,
Right: β = 0,8
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Sampling with AMIS

Conditional entropies for a binary Markov chain

10 20 30 40 50 60 70 80 90 100
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Figure 12: Distribution of the conditional entropy of non-sensed
locations given the sensed pixels at k = 18, using AMIS. β = 0,01. Under
the curve, the actual realization of the binary Markov chain is presented
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Comparison SMIS and AMIS

SMIS vs AMIS

0 100 200 300 400 500 600 700 800 900 1000

Number of Sampled Positions
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1
Sequential Optimal Sampling

Adaptive Sampling

Figure 13: Remaining conditional entropy by considering the previous
sampled locations and its measurements. Symmetric transition matrix
(β = 0,2)
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Estimation Error

AMIS vs Random Sampling
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Adaptive Sampling
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Figure 14: Estimation error considering the previous sampled locations
and its measurements. Symmetric transition matrix with β = 0,1. Left:
Random Sampling vs AMIS Method, Right: SMIS vs AMIS
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RAMIS Proposal

The preferential sampling solution proposed in this work is a combination between the
pure AMIS in (12) and a non-adaptive rule reminiscing of the SMIS strategy in (9)
under a Markov assumption.

RAMIS

Let Sk−1 =
{

(ial , j
a
l ) : l = 1, .., k − 1

}
denote the collection of the sampled locations

obtained by the proposed adaptive sampling strategy at the stage k − 1 of the
algorithm. Here, XSk−1

= (Xia1 ,j
a
1
, .., Xia

k−1
,ja

k−1
) corresponds to the sensed random

vector indexed by Sk−1, and xSk−1
= (x1, .., xk−1) denotes the measurements taken

at Sk−1 in Ak−1. Thus, the regularized AMIS rule (RAMIS) for stage k is the
solution of

(̂iak(α, xSk−1
), ĵak (α, xSk−1

)) = arg max
(i,j)∈[M ]×[M ]\Sk−1

α ·H(Xi,j |XSk−1
= xSk−1

)

+ (1− α) ·D((i, j), Sk−1). (16)
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Application to binary channels

Database

Figure 15: Proposed training images. Top: example of TIs, Bottom:
mean MI maps estimated from 200 realizations. From left to right:
Models SC1, MC1, MC2. Color maps, Top: Red is channel presence;
Bottom: Linear from blue (low MI) to bright yellow (max. MI)
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Application to binary channels

For performance evaluation two metrics were considered: resolvability and simulation
error.

Metrics

The resolvability of f is the average conditional entropy over the non-sensed positions,
given by

R(f, xSk
) ≡ average(H(Xi,j |XSk

= xSk
)(i,j)∈[M ]×[M ]\Sk

)

=
1

M2 − |Sk|
∑

(i,j)∈[M ]×[M ]\Sk

H(Xi,j |XSk
= xSk

) (17)
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Application to binary channels

For performance evaluation two metrics were considered: resolvability and simulation
error.

Metrics

If (xi,j)i,j is the true image, then the simulation error induced from f is the average
error over the non-sensed positions of the simulations given by

E(f, (xi,j)i,j) ≡
1

M2 − |Sk−1|
∑

(i,j)∈[M ]×[M ]\Sk

EXi,j

{
(xi,j −Xi,j)2 |XSk

= xSk

}
=

1

M2 − |Sk−1|
∑

(i,j)∈[M ]×[M ]\Sk

EXi,j

{
1Xi,j 6=xi,j |XSk

= xSk

}
=

1

M2 − |Sk−1|
∑

(i,j)∈[M ]×[M ]\Sk

P
{
Xi,j 6= xi,j |XSk

= xSk

}︸ ︷︷ ︸
Conditional Error Probability

. (18)

From (18), E(f, (xi,j)i,j) corresponds to the average frequency of error in detecting
the true non-sensed value with the values simulated from MPS, over the non-sensed
locations.
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Selecting the Regularization Parameter α

Figure 16: Estimated maps for the model SC1 at k = 100. Upper Row,
Left: Reference Image, Right: Sampled Locations. Lower Row, Left:
Entropy Map (α = 1), Right: Distance Map (α = 0). Color maps, linear
from blue to bright yellow (from low to high entropy or distances)
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Selecting the Regularization Parameter α
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Figure 17: Performance of non-sensed positions under RAMIS as a
function of α, after 500 samples. Left: Resolvability, Right: Mean error.
Average curves for 50 independent train-test sets
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Performance

Table 1: Global Performance Improvement after sampling 1,25 % of
positions (500 Samples in images of size 200 by 200 pixels). Here, the
outcome for α providing the best performance for each model is
presented.

Model Mean Metric
Reference

Performance
( %)

Optimal
Performance

( %)

Absolute
Improvement

( %)

Relative
Improvement

( %)
Model SC1
(α : 0,75)

Entropy 14.0 8.7 5.3 37.85
Pixel Error 6.4 3.8 2.6 40.63

Model MC1
(α : 0,70)

Entropy 37.8 33.7 4.1 10.85
Pixel Error 16.8 11.8 5.0 29.76

Model MC2
(α : 0,65)

Entropy 55.1 51.0 4.1 7.44
Pixel Error 28.0 23.7 4.3 15.3
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Performance

Figure 18: Example of the masks used to define transitions in channelized
images. 5 pixels around the transitions are considered. From left to right:
models SC1, MC1, and MC2. Color maps, solid yellow is the mask
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Performance
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Figure 19: Experimental performance for model SC1 in terms of (left)
Remaining Entropy reduction and (right) Estimation error. Top: global
performance. Bottom: local performance. Sampling rates from
[0 %− 1,25 %] with α = 0,7. Mean behavior over 50 realizations
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Performance Single Channel

Figure 20: Remaining Entropy maps for model SC1 using 600
realizations of the sampling process. Top: maps using the first 100
samples. Bottom: maps using the first 500 samples. Left to right:
RAMIS, quasi-regular, and random sampling. Color maps, linear from
blue (low remaining entropy) to bright yellow (high remaining entropy)
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Adaptive Ore-waste discrimination

Ore-waste discrimination with adaptive sampling strategy
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Figure 21: Schematic diagram of the sampling rule (??).
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Case Studies

The proposed methodology has been applied to three different cases, two of them
coming from the same ore deposit. The corresponding databases consist of drill-hole
composites widely spaced and denser blast-hole samples, which are used to validate

the sampling strategy. The two projects correspond to massive porphyry copper
deposits that are currently under operation
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Case Studies

The basic statistical information used to build the case studies is summarized in Table
2 and Table 3.

Table 2: Summary statistics.
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Case Studies

Table 3: Case study coordinates. Elevations represent the centers of the
considered benches.
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Case Studies

The statistical distributions of blast-holes grades present in the analyzed case studies
are described in Fig. 22, along with their basic statistics.
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Figure 22: Grade mineral distributions and basic statistics for the
available blast-holes. From left to right: CS1, CS2, CS3.
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Case Study I: Drill-hole samples data

In order to illustrate the density of available information for every single bench, Figs.
23 and 24 show the drill-hole composites and blast-hole samples for the first case
study. The block model estimated by ordinary kriging is displayed for these data in
Fig. 25.

Figure 23: Drill-hole samples data for case study 1. From left to right:
Benches 1-6. Colormap denotes the grade of Cu.
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Case Study I: Blast-hole data

Figure 24: Blast-hole data for case study 1. From left to right: Benches
1-6. Colormap: the same as in Fig. 23.
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Case Study I: Ground truth Estimation

Figure 25: Ground truth estimated from drill-holes and blast-holes
samples for case study 1. From left to right: Benches 1-6. Colormap: the
same as in Fig. 23.
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Case Study I: Samples from RAMIS

Figure 26: Samples for Case Study 1. From left to right: Benches 2-6.
Top: Kriging from structured sampling. Down: Kriging from adaptive
sampling using Cut-Off grade 1,012 %. Colormap: Describe batch of
samples in the order of the performed sampling.
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Case Study I: Reconstructions

Figure 27: Estimated grade for Case Study 1. From left to right: Benches
2-6. Top: Kriging from structured sampling. Down: Kriging from adaptive
sampling using Cut-Off grade 1,012 %. Colormap: the same as in Fig. 23.
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Case Study I: Estimated grade

Figure 28: Estimated grade control for Case Study 1. From left to right:
Benches 2-6. From top to bottom: Ground truth, structured sampling,
adaptive sampling using Cut-Off grade 1,012 %.
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Case Study I: Confusion Matrix

Figure 29: Confusion Matrix for Case Study 1. From left to right:
Benches 2-6. Top: Structured sampling. Down: Adaptive sampling using
Cut-Off grade 1,012 %.
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Case Study I: Binary Image Inference Performance

Table 4: Performance Error Summary for Case Study 1.

Case Study 1
Cutoff grade 1,102 Cutoff grade 1,241 Cutoff grade 1,518
STR ADA STR ADA STR ADA

Bench 2 0.112 0.069 0.133 0.114 0.059 0.055
Bench 3 0.138 0.106 0.104 0.102 0.066 0.064
Bench 4 0.109 0.082 0.091 0.086 0.053 0.051
Bench 5 0.084 0.048 0.086 0.083 0.090 0.083
Bench 6 0.111 0.060 0.127 0.108 0.109 0.097
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Case Study II: Binary Image Inference Performance

Table 5: Performance Error Summary for Case Study 2.

Case Study 2
Cutoff grade 0,220 Cutoff grade 0,445 Cutoff grade 0,692
STR ADA STR ADA STR ADA

Bench 2 0.048 0.043 0.100 0.096 0.112 0.080
Bench 3 0.039 0.032 0.109 0.097 0.091 0.068
Bench 4 0.037 0.034 0.078 0.066 0.057 0.045
Bench 5 0.055 0.038 0.036 0.024 0.036 0.026
Bench 6 0.031 0.015 0.025 0.010 0.013 0.010
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Case Study III: Binary Image Inference Performance

Table 6: Performance Error Summary for Case Study 3.

Case Study 3
Cutoff grade 0,115 Cutoff grade 0,273 Cutoff grade 0,486
STR ADA STR ADA STR ADA Bench 2

0.067 0.048 0.060 0.039 0.067 0.054
Bench 3 0.039 0.031 0.057 0.030 0.030 0.014
Bench 4 0.049 0.029 0.052 0.033 0.054 0.049
Bench 5 0.051 0.037 0.053 0.041 0.053 0.034
Bench 6 0.037 0.021 0.047 0.035 0.038 0.034
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Case Study I: Economical Profit Estimation

Table 7: Economical Profit Estimation for Case Study 1. In MM US$.

Case Study 1
Cutoff grade 1,102 Cutoff grade 1,241 Cutoff grade 1,518
STR ADA STR ADA STR ADA

Bench 2 33.574 34.146 13.483 13.726 2.675 1.737
Bench 3 28.581 28.462 10.419 9.439 1.284 2.520
Bench 4 33.562 34.150 15.423 16.114 6.295 5.792
Bench 5 41.065 41.590 23.272 23.814 11.174 11.502
Bench 6 46.401 47.135 27.623 28.165 16.420 15.427

Global 183.183 185.483 90.221 91.257 37.849 36.977
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Case Study II: Economical Profit Estimation

Table 8: Economical Profit Estimation for Case Study 2. In MM US$.

Case Study 2
Cutoff grade 0,220 Cutoff grade 0,445 Cutoff grade 0,692
STR ADA STR ADA STR ADA

Bench 2 49.281 49.320 23.729 23.992 6.096 6.704
Bench 3 39.309 39.458 16.727 16.362 -5.363 -4.555
Bench 4 47.299 47.262 23.257 23.646 8.957 9.425
Bench 5 36.460 36.703 19.278 19.181 10.392 10.714
Bench 6 9.790 9.994 1.145 1.330 -4.058 -3.937

Global 182.139 182.735 84.137 84.512 16.023 18.351
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Case Study III: Economical Profit Estimation

Table 9: Economical Profit Estimation for Case Study 3. In MM US$.

Case Study 3
Cutoff grade 0,115 Cutoff grade 0,273 Cutoff grade 0,486
STR ADA STR ADA STR ADA

Bench 2 17.685 17.974 17.382 17.371 3.059 2.419
Bench 3 11.577 11.674 10.136 11.130 -2.159 -1.943
Bench 4 10.651 10.904 9.772 10.213 -2.440 -2.553
Bench 5 14.629 14.859 14.111 13.993 1.192 1.725
Bench 6 16.038 16.288 15.316 15.262 3.136 3.964

Global 70.580 71.699 66.717 67.969 2.787 3.611
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Conclusions

The role of preferential sampling has been systematically
addressed for the task of geological facies recovery using
multiple-point simulation (MPS) and for the problem of
short-term planning in mining.
In the context of facies recovery using simulations, the task of
optimal sampling is formalized and addressed using a
maximum information extraction criterion. This sampling
principle has the ability to locate samples adaptively on the
positions that extract maximum information for the objective
of resolving the underlying field.
A formal justification is provided for adopting this
information-driven sampling criterion as well as concrete ways
of implementing this principle in practice.
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Conclusions

The proposed sampling strategy has been adapted to the
problem of short-term planning for the task of classifying
blocks to be processed as waste or ore in the production stage
of a mining project.
The proposed methodology takes advantage of the
information available from the previously sampled locations,
allowing to improve the performance as compared with some
of the classical non-adaptive sampling schemes used for
advanced drilling tasks.
It is important to emphasize that no previous work have
addressed the optimal sensing problem covered in this thesis
for characterization of geological fields in the context of MPS.
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Future work

Future work:
The applied principles can be extended to the characterization and recovery of
other geological signals with spatial structure in under sampling contexts.
There are many directions where this idea could be applied and it is an
interesting direction of future research to explore the full potential of this
framework. On the specifics, it would be interesting to apply the proposed
strategy to scenarios with multiple categories and to use techniques for
geostatistical continuous simulation to extend the proposed methodology to
continuous variables.
Study alternative geostatistical simulation tools that could provide more
effective estimations of the multi-point patterns.
The results are applicable to a wide range of disciplines where similar sampling
problems need to be faced, included but not limited to design of communication
networks, optimal integration and communication of swarms of robots and
drones, remote sensing.
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Thanks!

With an everlasting love, in memory of

Elba del Carmen Bustos Alarcón
and Hugo Felipe Santibáñez Salazar
and Julia Teresa Salazar Fuentealba

and Blanca Flor Leal Tapia
and Mercedes Tapia Tapia

and C. P. R. E.
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